Bmax=[(Erms * 10^{8})/(4.44*A*N*f) ] (4.44 for sine wave, 4.0 for square wave) |
where: Bmax=Maximum flux (gauss) density Erms=equivalent rms voltage across coil N=number of turns A=core cross section (cm^{2}) f=frequency (hertz) |
H=(0.4*pi* N*I)/l | where: H=magnetizing force (oersteds) N=number of turns I=peak current (amperes) l=mean magnetic path (cm) |
µ=B/H | where: µ=relative permeability B=flux density (gauss) H=magnetizing force (oersteds) |
L=(0.4*pi*µ*N^{2}*A*10^{-8})/l | where: L=inductance (henries) µ=core permeability N=number of turns A=core across section (cm^{2}) l=magnetic path length(cm) |
oersteds * 0.795 = amp-turns/cm gauss * 0.0001 = tesla mH/1000 turns * 10 = uH/100 turns in^{2} * 6.425 = cm^{2} circ mils * 5.07 x 10^{-6} = cm^{2} watts/lb * 17.62 = mW/cm^{3} |